PHASE EQUILIBRIA UP TO THE SOLIDUS LINE IN THE SYSTEM Fe₂O₃-Fe₈V₁₀W₁₆O₈₅

Jadwiga Walczak and Izabella Rychłowska-Himmel

Department of Inorganic Chemistry, Technical University of Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland

Abstract

Phase equilibria up to the solidus line in the system $Fe_2O_3-Fe_8V_{10}W_{16}O_{85}$ were determined by means of X-ray phase powder diffraction and differential thermal analysis. This system is one of the intersections of the three-component system $Fe_2O_3-V_2O_5-WO_3$. The studies revealed that this is not a real binary system, even in the solid state.

Keywords: phase equilibria, system Fe₂O₃ - Fe₈V₁₀W₁₆O₈₅

Introduction

Multicomponent systems of transition metal oxides are mainly of interest because of the catalytic properties both of their components and of the resultant phases. Studies on the phase equilibria in such systems are of importance in work on new catalysts with high activity and selectivity. The studies also lead to the discovery of new materials.

The present work covers studies on the phase equilibria up to the solidus line of the system $Fe_2O_3-Fe_8V_{10}W_{16}O_{85}$, one of the sections of the three-component system $Fe_2O_3-V_2O_5 - WO_3$.

Fe₂O₃ crystallizes in the rhombohedral system at temperatures higher than 427°C [1]. At temperatures higher than 1000°C, α -Fe₂O₃ undergoes thermal decomposition, loses part of its oxygen, and is converted into Fe₃O₄ [2, 3].

Our experiments with the system under discussion led to a new compound in the solid state, involving all three components of the system, to which the following molecular formula has been attributed: $Fe_8V_{10}W_{16}O_{85}$ [4]. The compound crystallizes in the orthorhombic system; its X-ray characteristics are known [5]. $Fe_8V_{10}W_{16}O_{85}$ melts incongruently at $830\pm5^{\circ}C$ to yield two solid products: Fe_2WO_6 and WO_3 [6]. Further investigations demonstrated that a solid solution of V_2O_5 is formed in the three-component system, occurring in two of three possible polymorphic modifications of Fe_2WO_6 [7]. The form β -Fe₂WO₆ was described and characterized recently [8].

0368–4466/95/ \$ 4.00 © 1995 Akadémiai Kiadó, Budapest John Wiley & Sons, Limited Chichester

Experimental

The following materials were used in the experiments: α -Fe₂O₃, p.a., a product of VEB Laborchemie Apolda (Germany), calcined at 1000°C for 3×24 h cycles; V₂O₅, p.a., product of POCh, Gliwice (Poland); and WO₃, p.a., a product of Fluka AG (Switzerland), additionally heated at 700°C for 24 h.

Mixtures of the oxides, weighed in appropriate proportions, were homogenized by grinding, shaped into pastilles and then heated in air at the given temperatures and in the given heating cycles. Both the temperature and the duration of heating were established in preliminary tests.

17 samples were prepared for the experiments, covering the whole component concentration range for the system under study. The compositions of the samples are given in Table 1. The samples were heated as follows:

 $650^{\circ}C(24 \text{ h}\times2) + 700^{\circ}C(24 \text{ h}+48 \text{ h}) + 710^{\circ}C(120 \text{ h}\times2)$

After each heating cycle, the samples were slowly cooled down to ambient temperature, ground and examined by X-ray phase powder diffraction and DTA. The powdered samples were again shaped into pastilles and heated in a new cycle. Preparations were considered to be at equilibrium if the phase composition did not undergo any change between two successive heating cycles.

The phase compositions of the samples were established from their powder diffraction patterns, obtained by using an X-ray diffractometer (DRON-3, Russia). The radiation source was a Co lamp equipped with a Fe filter. The resultant phases were identified with the aid of data listed in PDF cards [9] and in publications [5, 8].

DTA measurements were carried out at 20–1000°C in air with a Paulik-Paulik-Erdey derivatograph (MOM, Budapest). Samples of 1000 mg were placed in quartz crucibles, and the heating rate was 10 deg min⁻¹. The accuracy of the temperature reading in repeated measurements found to be ± 5 deg.

Results and discussion

Table 1 gives the compositions of the initial mixtures and the results of phase analysis of preparations at equilibrium. The data reveal that preparations formed from initial mixtures containing 98.00 or 95.00 mol% of Fe₂O₃ are three-phase mixtures, composed of α -Fe₂O₃, FeVO₄ and β -Fe₂WO_{6(s.s.)}. The diffraction patterns of preparations obtained from initial mixtures containing from 90.00 to 42.50 mol% of α -Fe₂O₃ displayed diffraction lines of three phases: FeVO₄, Fe₈V₁₀W₁₆O₈₅ and β -Fe₂WO_{6(s.s.)}. The diffraction patterns of other equilibrium preparations exhibited reflexions characteristic of Fe₈V₁₀W₁₆O₈₅ and FeVO₄. However, investigations on the system FeVO₄–WO₃ [6] give grounds for

. 1					
	Fe_2O_3	V_2O_5	WO ₃	Fe ₂ O ₃ in terms of component system	Phase composition of equilibrium samples ^a
	7	3	4	S	6
_	71.62	6.76	21.62	98.00	α-Fe2O3, FeVO4, β-Fe2WO _{6(S.S.)}
7	52.27	11.36	36.36	95.00	FeVO4, α -Fe ₂ O ₃ , β - Fe ₂ WO _{6(S.S.)}
9	38.23	14.71	47.06	90.00	FeVO4, Fe8V10W16O85, β-Fe2WO6(S.S.)
4	31.52	16.30	52.18	85.00	FeVO4, Fe8V10W16O85, β-Fe2WO6(S.S.)
5	27.59	17.24	55.17	80.00	FeVO4, Fe8V10W16O85, β-Fe2WO6(S.S.)
6	25.00	17.86	57.14	75.00	Fe ₈ V ₁₀ W ₁₆ O ₈₅ , FeVO ₄ , β-Fe ₂ WO _{6(S.S.)}
7	23.17	18.29	58.54	70.00	FegV10W16O85, FeVO4, β-Fe2WO6(S.S.)
8	21.81	18.62	59.57	65.00	Fe8V10W16O85, FeVO4, β-Fe2WO6(S.S.)
6	20.75	18.87	60.38	60.00	Fe8V10W16O85, FeVO4, β-Fe2WO6(S.S.)
0	19.91	19.07	61.02	55.00	Fe8V10W16O85, FeVO4, β-Fe2WO6(S.S.)
1	19.23	19.23	61.54	50.00	Fe8V10W16O85, FeVO4, β-Fe2WO6(S.S.)
6	18.41	19.43	62.16	42.50	FesV ₁₀ W ₁₆ O ₈₅ , FeVO ₄ , β-Fe ₂ WO _{6(S.S.)}
3	17.77	19.58	62.65	35.00	Fe8V10W16O85, FeVO4
4	17.26	19.70	63.04	27.50	Fe8V10W16O85, FeVO4
5	16.83	19.80	63.37	20.00	Fc8V10W16O85, FeVO4
6	16.48	19.88	63.64	12.50	Fe8V10W16O85, FeVO4
7	16.18	19.96	63.86	5.00	Fe8V10W16O85, FeVO4

Table 1 Composition of initial mixtures and results of X-ray phase analysis of preparations being at equilibrium in the Fe₂O₃-Fe₈V₁₀W₁₆O₈₅ system

ium samples / mol%	Fe ₈ V ₁₀ W ₁₆ O ₈₅	8	78.93	84.29	89.30	93.79	97.34
position of equilibr	FeV04	7	20.15	15.02	10.22	5.92	2.55
Calculated phase com	β-Fe ₂ WO ₆	9	0.92	0.69	0.48	0.29	0.11
nixtures / mol%	Fe ₂ O ₃ in terms of component system	5	35.00	27.50	20.00	12.50	5.00
of initial m	WO ₃	4	62.65	63.04	63.37	63.64	63.86
mposition	V205	3	19.58	19.70	19.80	19.88	19.96
ŭ	Fe ₂ O ₃	5	17.77	17.26	16.83	16.48	16.18
Sample	No	1	13	14	15	16	17

Table 2 Composition of initial mixtures and calculated phase composition of preparations being at equilibrium in the Fo₂O₃-Fe₈V₁₀W₁₆O₈₅ system

J. Thermal Anal., 45, 1995

assuming that these preparations too should be three-phase ones and contain not only Fe₈V₁₀W₁₆O₈₅ and FeVO₄, but also β -Fe₂WO_{6(s.s.)}, though in very low amounts. Individual detectability tests relating to β -Fe₂WO₆ in the presence of a large amount of Fe₈V₁₀W₁₆O₈₅ demonstrated that β -Fe₂WO₆ cannot be detected by X-ray phase powder diffraction unless its content is at least 1.5 mol%. This suggests that the content of β -Fe₂WO_{6(s.s.)} in these preparations is below the detectability level. In order to support this viewpoint, calculations were made and the findings are tabulated in Table 2 (columns 6–8). They confirm that the β -Fe₂WO_{6(s.s.)} content in the preparations remains below the detectability limit of X-ray phase powder diffraction.

The experimental results indicate that the system Fe_2O_3 - $Fe_8V_{10}W_{16}O_{85}$ is not a real two-component system, even in the solid state.

References

- 1 A. Bielanski, Podstawy Chemii Nieorganicznej, PWN, Warszawa, 1987.
- 2 A. Trumm, Neues Jahrb. Miner., Monatsh., (1978) 481.
- 3 O. N. Salmon, J. Phys. Chem., 65 (1961) 550.
- 4 J. Walczak and I. Rychłowska-Himmel, J. Mater. Sci., 29 (1994) 2745.
- 5 J. Walczak and I. Rychłowska-Himmel, J. Thermal Anal. in press.
- 6 J. Walczak and I. Rychłowska-Himmel, Thermochim. Acta, 221 (1993) 115.
- 7 M. Kurzawa, J. Walczak, I. Rychłowska-Himmel and E. Lukaszczyk, Book of Abstracts IVth Europ. Conf. Solid State Chem., Dresden, Germany, 1992, C 103, p. 379.
- 8 J. Walczak, I. Rychłowska-Himmel and P. Tabero, J. Mater. Sci., 27 (1992) 3680.
- 9 Powder Diffraction File, Int. Center for Diffr. Data, Swarthmore (USA), 1989, file No. 33-664, 9-387, 32-1395, 24-541.

Zusammenfassung — Mittels Röntgenpulverdiffraktion und Differentialthermoanalyse wurde das Phasengleichgewicht bis zur Solidus-Linie im System Fe_2O_3 - $Fe_8V_{10}W_{16}O_{85}$ bestimmt. Dieses System ist eine der Schnittlinien des Dreikomponentensystemes Fe_2O_3 - V_2O_5 - WO_3 . Die Untersuchungen ergaben, daß es sich hier im festen Zustand um kein echtes binäres System handelt.